
A Study of a Health Enterprise Information System,
Part 5 - Database Relational Schema and Data Tables

Jon Patrick, PhD
Health Information Technology Research Laboratory

School of IT
The University of Sydney

Abstract
Ten tables of the relational schema from the Cerner Millenium product are analysed for
weaknesses in design and implementation. The design is further assessed by considering
the full content of 3 data tables and screenshots of the contents of the 10 tables. The
potential consequences of the design weaknesses are described and discussed in terms
of their risk for process productivity and institutional outcomes, and maintaining the
protection of patient records from unauthorised interference.

Introduction
The database schemata and partial data tables for a number of the entities in the ERDs discussed in

Part 4.1 have been provided by associates, plus some other schemata for relational tables without the
corresponding ERDs are available. This information allows us to more deeply assess a number of aspects
of the CIS design and implementation. Firstly, it allows us to address putative weaknesses in design as to
whether they have been remedied in implementation. Secondly, they enable us to assess any new
weaknesses introduced in the implementation process itself.

Schema Descriptions
The schema descriptions have all been extracted using the Cerner tool VisualExplorer. They are therefore

subject to the vagaries that the tool might produce in differences between the underlying schemata
declarations and the presented descriptions in the tool. We believe that the glossary characteristics of the
tool date to an earlier stage of development so that there will be differences between attribute names and
possibly definitions compared to the most current software installations. This will create problems for
configuration and maintenance staff as they attempt to come to grips with the system whose
documentation is out of phase with the implementation.

The VisualExplorer tool presents a number of different types of information, namely:

the name of the table,
for each attribute:

• the name of the attribute,
• the data type of the attribute (e.g. F8, DQ8, I2, Varchar2, Char, Long, etc),
• a Definition explaining something about the attribute.

The display also shows red and yellow key icons that are explained in the Cerner manual as “A yellow
key displayed next to a field indicates an index for the field and a red key indicates a unique index” (see Fig
1). We interpreted the red key icon to mean that it indicates the PK in the schema. The yellow key is more
enigmatic. At times we believed it was used to indicate FKs in the schema but at other times it truly seems
to be acting to indicate just an index. No matter its underlying meaning we are left without any reliable
indicator for FKs in the schemata and at times concerns about the correct denotation of the PK as indicated
below. We have been unable to identify in the Cerner documentation any information about PKs and FKs.
There is evidence from time to time and from naming conventions for attribute names ending in the string
“_id” that attributes with the yellow key icon are FKs so we have adopted the convention to refer to these
attributes as “index/FK”. We will have to wait for further information to establish if they carry truly both
characteristics or not, but it is a weakness not to have a clear discernment of FKs to enable their proper
consideration by the development programmers. Named attributes without a red or yellow key icon ending
in the string “-id’ have been denoted as “putatative FKs” on the basis they have all the appearance of a FK
but their actual status on this functionality is unknown.

DRAFT Pt 5. Database Relational Schema and Data Tables

1

Figure 1. An example of the red and yellow key icons used to indicate a “unique index” and “index” as
presented in the VisualExplorer.

We understand that the data table can have attribute names different to the displayed attribute name list
in the schema glossary as it was compiled at sometime in the past and is not dynamically linked to the
executable schema. This means that there is a programming interface that can change attribute entries in
the real schema while the schema glossary tool shows an older version of the schema. This causes one to
wonder how programming staff can operate with confidence that the design they are seeing in front of them
is the actual design that is operating in the executable system.

A complete list of all tables studied in this work are listed in Appendix 2 along with their PK, index/FKs
and putative FKs.

Primary Keys (PK)
The study of PKs in the schemata shows signs of engineering weaknesses that cause some concern.

1. PK Uniqueness
It is normal for PKs to be maintained so that they are unique for every record in the database. This can

be done using functions built in to the database management system or it can programmed into by the
supplier software. Appendix 1 presents an analysis of the table PHA_PRODUCT which illustrates this data
table does not preserve the uniqueness of PKs.

DataType F8
The PKs are predominantly declared as of datatype F8, which can be interpreted as a floating point

number of 8 memory bytes, Unfortunately, despite having found a number of interpretations of this data
format we haven’t been able to unravel a reliable meaning of this declaration. However, the critical factor
about PKs is that one wants to compare them for being exactly equal, and for this reason they would
normally always be declared to be of integer datatype. In classical computing, floating point numbers are
not compared for equality but rather for a comparison value, that is, greater than or less than. The critical
issue is that once numbers get to be large the process of converting an integer number into a floating point
number is susceptible to errors in the conversion algorithms or slip ups in the data entry or upgrades in
software that change the processing methods of floating point numbers. It is true that a PK could be
created using floating point numbers and work correctly over a period time but it is a highly risky strategy
and pursued against the strongest possible advisory not to do so.

Foreign Keys (FK)
The use of FKs is to ensure that a piece of information about a major entity is correctly preserved in its

association with that entity, and that the piece of information cannot become dissociated from its primary
entity and therefore be inaccessible and clog up the database. It is conventional that when data is inserted
into a table where an attribute is a FK, to check that the value for the FK does exist in the primary table
under its PK value before inserting into the subsidiary table. It is also conventional that when a PK record is
deleted then all other references to that PK in FKs are deleted. Both these acts of processing can be
performed automatically by the database management software and do not require special programming
effort when the PK and FK relationships are defined in the table schemata. If the relationships are not
provided in the table schemata then either the integrity is not maintained or the software engineers must
design their own processing systems to protect this integrity.

There are a number situations in which FK checking might not be implemented:
i. a system that has a lot of legacy data where the FKs where not enforced in the first place.
ii. to avoid the computational cost of checking the correctness of the FKs;
iii. to save the time cost of debugging data conflicts.
iv. to avoid dealing with the problem of the sequence of updating tables in a complicated transaction

that requires dependencies to be properly preserved and inserted into the database in the correct
sequence.

v. time dependency when the time cost is too great for the checking in realtime and it is deferred until a
later time, however in this case a process that does the verification has to be defined and made
operational in the application context.

 On some occasions we can more definitely identify FKs because we either have a definite declaration of
a PK in another table or we have a Definition that informs us the attribute is a FK or a PK from another table.
Unfortunately we do not always have these clear indicators.

DRAFT Pt 5. Database Relational Schema and Data Tables

2

Attribute Usage
Naming of attributes is important in that they carry the base load of the semantics of the application.

Failure to use attribute names that are appropriate for the data they carry makes it more difficult for
programming staff to create the correct internal processing the system needs and to present the correct
information values in the presentation layer. This leads to incorrect and confusing information being
presented to the clinical user and potentially showing the wrong information associated with a given client.
Another side effect is more subtle and less easy to detect, that is, derivative information that is computed
from raw data values where the error in the values is masked by indirectness that is only discovered after
considerable time has elapsed and a particularly severe case comes to the attention of watchful and astute
staff.

Overloading attributes with multiple meanings is a particularly significant danger in this situation as the
programming staff need to understand the exact meaning context they are programming to get the correct
values manipulated in a given context. This is likely to reduce accuracy and reliability as the system gets
older and newer staff join the programming team without the historical knowledge of the original designers.

Weaknesses that have been identified include: attribute overloading in PERSON, changing attribute
names and datatypes between the relational schema and data tables in ITEM_MASTER and
MEDICATION_DEFINITION, ambiguous definItions of attributes in DCP_FORMS_ACTIVITY,
DCP_FORMS_REF, and missing definitions of attributes in MEDICATION_DEFINITION.

In the case of DCP_FORMS_REF there are fields for the height and width of print configurations which
are mostly redundant nowadays with the software for processing web serviced data.

Data Values

Stored data values in the database tables give some indications of the types of processing that is done
to the data. It can identify the consistency of data across PK-FK relations and show if invalid or
questionable data is allowed into the database. This in turn can indicate to some extent whether entity and
referential integrity is being enforced across the data tables.

Weaknesses identified by studying data values have been: duplication of attributes between
DCP_FORMS_REF and DCP_FORMS_ACTIVITY, variable and dubious orthographies in
MEDICATION_DEFINITION, sequential and contiguous data values for PKs in PRSNL, REF_TEXT,
RET_TEXT_RELTN.

A miscellaneous set of weaknesses are: unusual records loaded into ITEM_MASTER, and selective
processing of records based on date variations in ITEM_MASTER.

The set of data tables for the pharmacy schema were provided, namely ITEM_MASTER,
MED_IDENTIFIER and MEDICATION_DEFINITION. The aim of analysing these tables was to establish if
data values that violated referential integrity could be found. Item_id is declared to be the PK of
ITEM_MASTER and in MEDICATION_DEFINITION defined as “Item_id inherited from item_master”. Also it is
used as an index/FK in MED_IDENTIFIER and thus links each of these tables together. The following results
are provided:

A = Item_id data values in ITEM_MASTER but not in MED_IDENTIFIER
A = {"590623", "590634", "590645", "590656", "1501266", "1495298"}

B = Item_id data values in ITEM_MASTER but not in MEDICATION_DEFINITION
B = {"590623", "590634", "590645", "590656"}

C = Item_id data values in MEDICATION_DEFINITION but not in
MED_IDENTIFIER
C = {"1495298", "1501266"} = A-B

D = Item_id in MEDICATION_DEFINITION but not in ITEM_MASTER
D = {}

A and B = {"590623", "590634", "590645", "590656"}
These four records have an update_cnt of zero and were created in 2003 whilst the
remainder of the table was created in 2009 and 2010.

DRAFT Pt 5. Database Relational Schema and Data Tables

3

These results beg the question as to why there should be data values in the ITEM_MASTER table and
not related tables. It might satisfy some to say that the 4 old records in the ITEM_MASTER table are left
over remnants from an earlier installation that have no effect on the operational system but such an
argument still does not excuse the fact that PKs in one table are not validated in another table.

Likewise the 2 contemporary PK references in ITEM_MASTER and MEDICATION_DEFINITION that have
no matching records in MED_IDENTIFER whilst not an integrity violation invite the question as to why there
are only two records out of about 3700 that are missing this data.

Issues from Specific Tables
Different Datatypes for the same PK
Comparison of MEDICATION_DEFINITION and PHA_PRODCT Tables

In the MEDICATION_DEFINITION table an attribute item_id is declared as the PK with the definition “Item
id inherited from item_master” (see Appendix 1, fig 6). The attribute cki is declared as an index/FK with a
datatype of VC255 and has the definition “Cerner Knowledge Index field for MULTUM MMDC numbers.
Syntax is “MUL.FRMLTN!<mmdc>” ”. It is a particularly concerning issue for a FK or PK to be declared as
a character field as just as with floating point numbers errors creep into the processing system quite readily.
The fact that the fields are VARCHAR means that they can be variable length strings and hence a key value
might be inserted into the system in one place with the correct set of digits but in another place the the
same digits might have a leading blank or zero and in another place might have a trailing blank or zero. In
each case none will be correctly tested to be equivalent to the other.

In the table PHA_PRODUCT the attribute item_id has no PK nor index/FK declarations even though it
carries the definition “Primary Key - Item id for the product”, which also seems to indicate it is the same
attribute in both tables. There is no attribute in this table called cki but there is an attribute gfc_cki with the
datatype VC100 and the definition “Cerner Knowledge Index for generic information as defined by
MULTUM. CKI is MUL.FRMLTN!<main_multum_drug_code>” which appears to be intensionally the same
as the cki attribute in the MEDICATION_DEFINITION table. The design weakness in these attributes are that
they are different datatype sizes, 100 vs. 255 characters of variable length, which leaves open vagaries
about how they might be compared correctly, and variably declared as non-keys and keys thus cutting off
the internal checking mechanisms for ensuring the same data is correct and consistent and not corrupted
or missing or formatted in a different manner across different tables.

Confused Primary Key Selection - REF_TEXT

The table REF_TEXT is shown, in the Cerner tool VisualExplorer, with a dual attribute PK, that is a
primary key consisting of two attributes, namely refr_text_id and ref_text_name, with datatypes F8 and
VC100 respectively (see Appendix 1, fig 22). This structure is also known as a concatenated key.

This formation is striking because the second attribute is a variable character datatype. This is wasteful
for computation in the construction of an index for the PK and in the comparison of PKs in searching for
records. Furthermore, as discussed above variable character fields are prone to variations of representation
of the same values and so are not recommended for use as PKs.

The interpretation of this design has further issues to be considered. The name of the PK usually mimics
the name of the table and so we would expect it to not have the second “r” and be ref_text_id or the name
of the table changed to REFR_TEXT. Further confusion about the intended PK for this table is created by
the definition of each of the participating attributes, being for refr_text_id, “the key to the table identifying
the reference text”, and for ref_text_name being “Ref text name”, suggesting that only the first attribute is
the PK.

The ERD sheds little light onto this problem as it shows no PK for the entity REF_TEXT and refr_text_id
is shown as an ordinary attribute that is neither a PK nor FK.

Searching in the data table itself to use the actual data values to aid in interpretation also adds to this
mystification as for many records ref_text_name is empty suggesting that although the field is declared as
part of the PK, the values are not enforced, that is, there is no application of the PK Integrity rule.

Furthermore, in the REF_TEXT schema there are two other putative FKs, recognised by their name
structure and definition, namely: text_entity_id, “The id where the text string is being stored...”, and
update_id, “The person_id of the person from the personnel table [prsnl]...”, suggesting that FK referential
integrity checking has not been applied to this table. Hence there will not be any automatic checking that a
person_id inserted into this table will be a valid value registered in the PRSNL table, and likewise that
text_entity_id value is not validated.

DRAFT Pt 5. Database Relational Schema and Data Tables

4

Undeclared PK - REF_TEXT_RELTN Table
The REF_TEXT_RELTN table is shown in the VisualExplorer tool (Fig. 2) to have a single PK of

parent_entity_name with datatype C32, a single index/FK refr_text_id with datatype F8 and two attributes of
interest parent_entity_id and ref_text_reln_id, that are putatively PKs judged by their name structure, that is
they end in the string “_id” and their datatypes of F8, but they do not show the PK nor FK index icons.

Figure 2. View using Cerner’s Visual Explorer tool of the table REF_TEXT_RELN showing only the salient
attributes under discussion.

An analysis of these definitions leads to a confusing picture. Normally, as we have seen in other parts of
the system, the name of a PK of a table is constructed using the name of the table and adding the string
“_id”, in which case we would expect the attribute shown in the table ref_text_reln_id to be declared as the
PK, which it plainly it is not. As well, its definition “the id to identify the relationship between an attribute
and a piece of reference text.” is indicative that it is consistent with being the appropriate PK for this table.

The attribute labeled as the PK is parent_entity_name which is a fixed length character datatype which
as we have said before is undesirable as a PK due to the added computational cost of manipulating
character strings to make comparisons between PK values. Further, the definition of this attribute is given
as “The name of the type of entity you are associating the text too(sic)...”.

The attribute parent_entity_id seems to be the key value for the attribute parent_entity_name and so we
would expect it to be defined as a FK, and it would be in the relationship as defined by this table with the
attribute refr_text_id which is seemingly correctly defined as an index/FK.

In summary based on the naming conventions most commonly used in this schema and the definitions
of the attributes we would expect the PK and index/FK declarations shown in Table 1. The actual
assignments are also shown in Table 1.

1. Attribute 1. Actual Declarations 1. Predicted Declarations

parent_entity_id none index/FK

parent_entity_name PK none

refr_text_id index/FK index/FK

ref_text_reltn_id none PK

Table 1. Actual and expected index key declarations in the table REF_TEXT_RELTN.

The question remaining to be answered is - Does the allocation of keys shown in Table 1 make any
difference? The answer is NO if you do not want the DBMS to manage the integrity of the identifiers that
link data from one table to another. The answer is YES if you want strong checking that data is consistent
and not erroneous before it is inserted into a table for storage, and you want to exploit the validated
integrity of the data to construct other validation suites such as clinical decision support which is highly
reliable both from a clinical data point of view and from a software engineering and code management point
of view.

Compilation of Weaknesses
A complete study of each table and our observations about their weaknesses are presented in Appendix

1. A compilation of the principal weaknesses identified in the available schema and data tables has been
collated in Table 2. The results show that there is no schema or table without a weakness of some kind. The
most persistent weaknesses across the data set are non-integer PKs and non-declared FKs. Issues that
would represent the highest risk for user sites would be: doubtful PKs, misnamed PKs, and overloading
attributes as these potentially can interfere with more fundamental aspects of data management and hence
veracity. Other weaknesses if they create disturbance to data will tend to be isolated to single items such as
a single patient or pharmacy record.

DRAFT Pt 5. Database Relational Schema and Data Tables

5

Weakness Table Implicated Attribute

Data duplication across
tables

DCP_FORMS_REF and
DCP_FORMS_ACTIVITY

definition and description

Doubtful PK REF_TEXT_RELTN parent_entity_name

Doubtful concatenated PK PRSNL person_id+username

Doubtful PK PRSNL username

Doubtful PK REF_TEXT ref_text_name

Floating Point PK All Tables all PKs

Inconsistent naming between
glossary and data tables

ACCESS_CONTROL_POLICY a_access_control_decisio
n_disp

Inconsistent naming between
glossary and data tables

MED_IDENTIFIER m_flex_type_disp,
m_med_identifier_type_disp,
and m_pharmacy_type_disp

Inconsistent naming between
glossary and data tables

ITEM_MASTER i_cost_center_disp,
i_storage_requirement_disp
and i_sub_account_disp

Inconsistent naming between
glossary and data tables

MEDICATION_DEFINITION m_alternate_dispense_cat
egory_disp,
m_dispense_category_disp,
m_dispense_quantity_unit_di
sp, m_formulary_status_disp,
m_form_disp,
m_legal_status_disp,
m_order_alert1_disp_morder
_alert2_disp,
m_strength_unit_disp, and
m_volume_unit_disp

Misnamed PK PRSNL person_id

Misnamed PK REF_TEXT refr_text_id

Missing or Poor Definitions MED_IDENTIFIER all attributes

Missing or Poor Definitions DCP_FORMS_REF description, definition

Overloading attributes PRSNL prsnl_type_cd

Overloading attributes PERSON person_type_cd

Potential Problematic dates MEDICATION_DEFINITION updt_dt_tm

Potential Problematic dates ITEM_MASTER updt_dt_tm

Questionable Data Values MED_IDENTIFIER value_key

Questionable Data Values ITEM_MASTER item_id, updt_id,
updt_task

Reused PK MEDICATION_DEFINITION item_id

DRAFT Pt 5. Database Relational Schema and Data Tables

6

Weakness Table Implicated Attribute

Undeclared FKs Most tables (10 out of 12) 51 cases

Unidentified PK REF_TEXT_RELTN ref_text_reltn_id

Variation in datatypes across
tables

MEDICATION_DEFINTION vs
PHA_PRODUCT

cki (VC255) vs gcr_cki
and gfc_cki (CV100)

Table 2. The principal weaknesses found in the analysis of 12 tables of the Cerner Millenium software.

Conclusions
Weaknesses in CIS implementation suggest a lack of attention to detail, particularly specific testing to

validate schema designs and index/FK and PK selection. If the yellow key icon is truly an FK indicator then
the apparent use of FKs for creating indices rather than their purpose of maintaining referential integrity is a
misapplication of this functionality.

Identified weaknesses could reasonably be expected to produce faulty processing of user data
manifesting as problems such as, missing parts of patient records, missing information about pharmacy
products. Particularly, these occurrences will appear occasionally without any apparent systematic
behaviour as they will not be triggered by each and every patient record but rather only where a particular
record uses a combination of information that requires the correct data relationships. Hence any one clinical
user will observe a fault on occasions so far apart in time they will not connect a set of failings as being
related to an underlying systematic weakness.

DRAFT Pt 5. Database Relational Schema and Data Tables

7

Appendix 1. Analysis of Each Table for Design and
Implementation Weaknesses
1. ACCESS_CONTROL_POLICY

This table is also represented in an ERD in which it has no common attributes apart from the auditing
attributes inserted in all schema. A search of all ERDs for the Security Application (33 entities) shows no
entity with any reasonable similarity to the implemented schema. Minimally this is an example of the
documentation being entirely out of date with the implementation, but a more likely explanation is that the
ERD diagram has been incorrectly labelled by staff who were unfamiliar with the larger design of the
system.

There are two putative keys access_control_type_entity_id and data_source_entity_id which based on
their descriptions appear to be references in other schema and would be expected to be index/FKs under
normal circumstances. This would ensure no cross references could be created for Access Control Types or
Data Sources that did not exist, and that such cross references would be deleted if the original referents
were removed.

The data table shows an attribute a_access_control_decision_disp (Fig 2) which is not shown on the
schema glossary (Fig. 1) but appears to be a renaming of the attribute access_control_decision_cd as its
Definition in the schema glossary states that its values can be “permit” or “deny”, and these are the values
found in the data table.

Figure 1. Relational schema of the ACCESS_CONTROL_POLICY table as seen through the Cerner
VisualExplorer tool.

Figure 2. Data table for the ACCESS_CONTROL_POLICY table. Note the name of the first attribute is
different to that shown in the schema, although the values are consistent with the definition in the schema.

2. DCP_FORMS_ACTIVITY
This schema expresses the activity around using a form in the relationships between patient (person_id),

encounter (encntr_id), task (task_id) and forms (dcp_forms_ref_id). It has the putative FK lock_prsnl_id from
the PRSNL schema which is presumably the clinical staff member accessing the patient record.

An interesting declared index/FK is the audit field updt_tm_tm which is by this definition set up as a
match to all other relational schema tables that have this auditing information (see Fig. 3). This suggests
that the attribute is being used as an index rather than a FK unless it is matched with a very particular
schema table. We know from the reports of clinical staff at live sites that searching recent records only
allows for viewing the last 1000 updates performed on patient records. It may well be that this field is
indexed to provide this service and time limited by logic coding in the software. However we also know that
in the preparation of multiple pathology orders that each order for the same sample must have exactly the
same time stamp otherwise it is rejected. An embedded computational strategy that makes this attribute a
FK that requires matching would explain the user interface behaviour. If this were the case then it would be
considered a weakness in implementation as logically two orders on the same sample cannot be made at a
physically synchronous moment in time. A computational strategy which uses the same sample identifier
would be more appropriate.

Another attribute is of interest, description (VC255), as it is described as “the display that will show up in
the form browser” without indicating the role of this text, that is, is it about the patient or is it about the
form.

DRAFT Pt 5. Database Relational Schema and Data Tables

8

The data table shows the PK values as a 11 digit floating point number with 2 decimal points. This
ostensibly confirms that the PKs are floating point numbers.

Figure 3. DCP_FORMS_ACTIVITY glossary schema. The attribute updt_dt_tm is an unusual for an
index/FK role.

Figure 4. DCP_FORMS_ACTIVITY data table. The Description attribute has values match contents in the
DCP_FORMS_REF table, e.g. “Patient Data Profile - Adult”.

3. DCP_FORMS_REF
The schema glossary shows a PK dcp_forms_instance_id and one index/FK dcp_forms_ref_id. It

appears to capture information about a designed form and its version (see fig. 5). It is notable that there are
two attributes that are difficult to separate in their meaning intention:

• description (VC200) described as “textual description of the form”, and
• definition (VC200) described as “textual definition of the form”.

Two other attributes are also notable in that they define the physical size of a form, height and width. In
the modern interface the sizing of presentation content is a more flexible matter as web pages can be
manipulated extensively by the user making it of very limited opportunity to predefine document sizes. This
information might explain the complaints from clinical staff that many pages are printed from reports that

DRAFT Pt 5. Database Relational Schema and Data Tables

9

are mostly blank and contain limited content of value. Another complaint, that these attributes may have a
bearing on, is the very small size of fixed windows that carry critical information that then require horizontal
and vertical scrolling to read the information, thus delaying clinicians in their patient care.

The values in the data table column labelled definition appear to be the same as in the column
description of the DCP_FORMS_ACTIVITY table adding further to the previously mentioned terminological
ambiguity (see fig. 6) Such a duplication of data are normally unnecessary and without a very secure
method of loading data is prone to producing inconsistencies in the purportedly same data kept in different
places.

Figure 5. DCP_FORMS_REF. The PK is incorrectly named as dcp_form_instance_id and what should be
the correct PK name, dcp_forms_ref_id is shown as an index/FK.

Figure 6. DCP_FORMS_REF data table. The attribute dcp_form_ref_id should be the PK by
naming convention and shows duplicate values.

4. ITEM_MASTER
This is a simple schema as shown in the glossary with a PK item_id and no index/FKs nor putative FKs

(see Figure 7). There is no explanation as to the meaning intention of the PK.
The data table shows the attribute i_cost_center_disp which is not on the schema design as presented

in the VisualExplorer tool, although a possible equivalent attribute cost_center_cd is present (see figure 8).
Two other attributes also appear to be renamed in a similar manner; i_storage_requirement_disp and
i_sub_account_disp appear in the data table whereas storage_requirement_cd and sub_account_cd appear
in the schema glossary.

Figure 7. ITEM_MASTER Schema Glossary.

DRAFT Pt 5. Database Relational Schema and Data Tables

10

There are 3,764 entries in the data table made available to us. There are 4 entries, described above in
detail, that are striking in that their updt_dt_tm value is 08/27/03, whereas all other records are dated in
2009 and 2010. These records also have a unique updt_id =2 and updt_task =900126.

The values of the PKs in this data table also show some unusual regular patterns, the significance of
which has not been established. All PKs are odd numbers and predominantly the separation between
consecutive values is 60 or some multiple of 60. Variations of 58, 62 and 64 can be found. At about two-
thirds of the way through the sequence it switches to odd and even digits although there are long runs of
even digits with intervals varying around a median of 44. From inspection of other columns there does not
appear to be any correlation with the values of any of the other fields in the table including the audit
information of dates, and applications. Although not entirely regular this appears to be systematic enough
to warrant an explanation. A further inspection of the other columns show all values are either zero or blank.
The only content in this table apart form the auditing information and the ROWID is the item_id. So this
table is just a list of item_id values and nothing else which makes it more unclear as to the reason it is not
integrated into the MEDICATION_DEFINITON table which has the same PK.

The comparison of the PK values for item_id with MED_IDENTIFIER table (see details below) show a
closer correspondence with its PK med_identifier_id, where the former value appears to be the next number
value after the latter value. This indicates a software process that manages the PK values outside of the
database management software and is usually inadvisable. The regularities of the PK values intimates a
process that has been implemented in the application software that manages the PK values across multiple
tables. If adopted this is an unconventional approach that would put the economy of programming ahead
of more rigorous methods of assigning PK values by the database management system.

Another concern for data veracity arises from a study of the dates of the update transactions to this
table. The spreadsheet of values shows that any update between the first of the month and the 12th of the
month triggers a warning message that “this cell contains a date string represented with only 2 digits for the
year”. As this is true for ALL dates in the file this implies there are two different processing activities in the
preparation of the ITEM_MASTER records that lead to different internal representations that in turn have
unforeseen and undetected representations at least in the viewing spreadsheet software and potentially
elsewhere.

Figure 8. Screenshot of ITEM_MASTER data table indicating dates in the updt_tm_dt attribute that
trigger a warning (green triangles) and dates that show no such warning in a spreadsheet.

5. MEDICATION_DEFINITION
This is a schema with the PK item_id and therefore on a principle of best practice it could be merged

into the ITEM_MASTER schema. It has not been possible to determine the special differences between the
two schemata to warrant their separation.

There are 4 index/FKs, cki (VC255), inv_master_id, parent_item_id, primary_manufacturer_item_id, and 6
putative FKs, comment1_id, comment2_id, compound_text_id, mdx_gfc_nomen_id, order_sentence_id,
price_sched_id.

 The intension of this schema seems to be to hold information that defines medicines. The cki is an
index/FK, in the datatype format VC255, but there is no indication as to which table it originates from either
as a PK or common attribute. It seems to be present in the PHA_PRODUCT schema glossary as two
attributes gcr_cki and gfc_cki in the data formats VC100 and do not have icons indicating any index/FK
status (see Fig 9).

DRAFT Pt 5. Database Relational Schema and Data Tables

11

Figure 9. The Schema glossary for the table MEDICATION_DEFINITION showing the same PK item_id as
the table ITEM_MASTER (fig. 5) and the attribute cki as datatype VC255.

The Definition descriptions of putative FKs comment2_id and compound_text_id both refer to them as
being keys in the LONG_TEXT table, and comment1_id referred to as a “link”. Hence this is a clear
indication that the PK functions of these attributes are recognised descriptively but possibly ignored in this
implementation, potentially bringing with it all the concomitant risks.

The data table consists of 3760 records. It shows an attribute m_alternate_dispense_category_disp
which is not shown in the schema glossary but appears to be a match for alternate_dispense_category_cd.
Other attributes that show the same apparent change to their names are m_dispense_category_disp,
m_dispense_quantity_unit_disp, m_formulary_status_disp, m_form_disp, m_legal_status_disp,
m_order_alert1_dips, m_order_alert2_disp, plus two additional attributes m_strength_unit_disp, and
m_volume_unit_disp. The schema glossary description using the old attribute names declares all these
fields as F8 and there is no indication of the datatype of the renamed fields, but many of the fields are
empty and where they do have content it is sometimes text material, hence it is likely these fields have had
their datatypes changed (see Fig. 10.2). This is a particularly problematic task in a large software system as
the maintenance programmers must find every reference to these data fields and ensure they are all
changed to the new format.

Figure 10.1 MEDICATION_DEFINITION data table from site 1. The PK item_id is shown as a floating
point number.

DRAFT Pt 5. Database Relational Schema and Data Tables

12

Figure 10.2. MEDICATION_DEFINITION data table from site 2. Column P, m_form_dips has text values
when it is defined as a datatype of F8.

The data values as shown in the VisualExplorer tool for item_id have the float format with 9 digits and 2
decimal points (see Fig. 10.1).

The dates in the spreadsheet show the same warning for updt_tm_dt between the 1st and 12th of each
month as for ITEM_MASTER (see Fig 8).

6. MED_IDENTIFIER
The MED_IDENTIFIER schema is poorly described with no meaningful Definitions provided in the

glossary, almost all of them being a repeat of the attribute name themselves with no further information. The
PK is shown as med_identifier_id with two index/FKs item_id and pharmacy_type_cd. The latter is one of
the rare occasions were a “_cd” denoted attribute is used as a PK or index/FK (see Figure 11). We are not
able to determine a schema table in which this is the PK.

Figure 11. Parts of the schema glossary for the table MED_IDENTIFIER.

There are 5 putative FKs, med_def_flex_id, med_ingred_set_id, med_package_type_id, med_product_id,
and parent_entity_id. As the Definitions give no meaningful information we can make no inferences as to
what information they are meant to contain and how they might relate to other schema tables.

DRAFT Pt 5. Database Relational Schema and Data Tables

13

Figure 12. Extract from the MED_IDENTIFIER data table with med_idenitfier_id (col A) and item_id (col
B) values. Each new item_id value is one more than the previous med_identifier_id value. About 70% of the
data set follows this sequence which is broken at med_identifier_id value 1464064.

The data table has 48060 entries. The following attributes appear to be renamed relative to the schema
glossary: m_flex_type_disp, m_med_identifier_type_disp, and m_pharmacy_type_disp. The value and
value_key attributes show data values with many inconsistent orthographies amongst like information (e.g.
strings beginning with “zz”, number strings for national Drug Codes of the USA, with missing hyphens),
which could point to data entry errors.

The data values for this table show a correspondence between the values of the PK, med_identifier_id
and the FK item_id, that is systematic for about 35,000 records. For a small set of PK values, all of which
have the same item_id value, it follows a contiguous sequence of integers of 10 values followed by a small
gap in the sequence followed by a contiguous set of four numbers. The next item_id value will be the
number following the last value of the med_identifier_id (See Figure 12). This allocation of one attribute
value, which is a PK in another table, dependent on another PK is a strange configuration. It is usual to
allocate PK values as an independent series of numbers, that ensures they are unique within their own set.
An important strategy used for high security applications would be to generate them as series of digits
using public/private key encryption which make them appear to be a random set of digits and so
subsequently have no meaning to their sequential values. Also this sequence suggests to us that the PK
values for MED_IDENTIFIER are allocated before those of ITEM_MASTER indicating the loading
dependency of the data. This throws up an intriguing issue on the 6 item_id values that appear in
ITEM_MASTER but not in MED_IDENTIFIER as discussed above {"590623", "590634", "590645", "590656",
"1501266", "1495298"}. If these values are determined by the sequence of loading recods into the
MED_IDENTIFIER table, wha was the weakness in the process that allowed these values to be loaded into
ITEM_MASTER.

In an effort to understand the role of PKs and FKs in this application a study was made of the values in
the table of key values from other tables. In this case focus was placed on the ndc PK attribute from the
PHA_PRODUCT table. Although the ndc is not an attribute in the MED_IDENTIFIER table and therefore
there is no referential integrity constraint to be enforced between the two tables, the values are in the table
in the attribute VALUE. It seemed important to understand the reliability of National Drug Codes no matter
where they are stored in the system even in redundant locations.

DRAFT Pt 5. Database Relational Schema and Data Tables

14

Value Frequency Irregular
values

Value Frequency Irregular
Values

Brand Name 7339 4 Pyxis Interface ID 3118 6

Charge Number 3174 6 Rx Device 1 312 3

Description 8350 42 Rx Misc 1 3018 18

Generic Name 3236 3 Rx Misc 2 2387 3

HCPCS Code 791 8 Rx Unique ID 8160 4

NDC 4404 9 Short Description 3770 12

TOTAL 48060 118

Table 1. The complete set of values of the attribute m_med_identifer_type_disp and their frequencies
from the table MED_IDENTIFIER.

The search for NDC values starts with the attribute med_identifier_type_cd as shown in the schema
glossary but which seems to be transformed to the name m_med_identifer_type_disp in the data table itself.
Table 1 shows the complete set of values of the attribute and their frequencies.

Across all the category values of the attribute m_med_identifer_type_disp there are a total of 118
irregular values. These are values that based on the surrounding values in the category seem to be
decidedly out of place. For example the RX Device category clearly lists alphanumeric codes for devices
but Figure 9 shows two dates and one number in three records.

Figure 13. Three records (rows 2-4) for the RX Device value attribute that appear entirely irregular
compared to other values in the table for the same category.

Filtering on the NDC value of attribute m_med_identifer_type_disp (col D) enables one to see the actual
NDC values (col J) shown in the VALUE attribute and check if any show an irregular form. Figures 13 and 14
show the irregular data values of NDC codes in this attribute.

DRAFT Pt 5. Database Relational Schema and Data Tables

15

Figure 14. The first example of NDC values (col J) in the MED_IDENTIFIER data table which show
irregular structure in the 4th and last rows.The regular structure can be seen in rows 1-3, and 5-9.

Figure 15. The second example of NDC values (col J) in the MED_IDENTIFIER data table which show
irregular structure in rows 1-7.The regular structure can be seen from row 8 onwards.

A study of record sets for each item_id value of these irregular NDC values reveals no noticeable
consistency between all the records with the irregular digit patterns. The most perplexing record is the last
record in Figure 14 with no digits but the value of the string “tracleer”. All records that have the same
item_id value of this record, 1591074, are shown in Figure 16. They show a semantically consistent set of
records about the medicine Bosentan, also known as Tracleer.

It remains to explain how these irregular values were lodged into these tables in the first place. We have
no direct knowledge of the loading mechanism for these values. Our deduction is that the PHA_PRODUCT
has ndc as its PK so that is the first point at which these data values should be loaded and form the primary
authoritative source for these values. Subsequently the values could be copied to other locations for local
use but they should be referenced as a FK in those places so that automated checking with the
authoritative source would always be operational when they are modified.

If these values are drawn from another source to be inserted into the table then they have not been
validated against the authoritative source which would indicate missing referential integrity checking. If the
values are inserted first in the authoritative table and these values are inapplicable then the mechanism for
data validation has seemingly failed to operate effectively. This does not indicate that the PK uniqueness
integrity checking has failed, as all these values {“0”, “1”, “2”, “1000203”, “487020103”, “9999000001”,
“0000-0000-55”, “99999-999-02”, “tracleer”} although irregular are unique, though they are of variable
datatypes, at least notionally (see Fig. 15).

DRAFT Pt 5. Database Relational Schema and Data Tables

16

Figure 16. The complete set of records (rows 1-3) for the irregular NDC code “tracleer” with the item_id
values (col A) of 1591074. This shows that the set of records, under the same item_id code value, of
themselves make a coherent grouping about the medicine Bosentan.

On the other hand if the table PHA_PRODUCT is not the authoritative source for the NDC values then it
is difficult to understand the role of the NDC values as the PK of this table.

Across all the category values of the attribute m_med_identifer_type_disp there are a total of 118
irregular values. These are values based on the surrounding values in the category that seem decidedly out
of place. For example the RX Device category clearly lists alphanumeric codes for devices but Figure
167shows two dates and one number in three records.

Figure 17. Three records for the RxDevice value that appear entirely irregular compared to other values
in the table for the same category.

 An investigation of the HCPCS codes showed a value of 90371 which should contain an alpha
character. On using the item_id to get a description of the item and then searching the HCPCS code list for
the description we were able to establish the value should most likely be one of {J1571, J1573, Q4090}.

Overall the irregularity rate in the MED_IDENTIFIER table appears to be the order of approximately 1 in
400 (see Table 1). For some categories of information this would not appear to be critical but in a few cases
for example where categories seem to be unique codes for medicines this may well be of crucial
importance. One would have thought that categories such as NDC, HCPCS Code, Pyxis Interface ID and
Rx Unique ID carried information important enough for patient care not to want it to have any anomalies.

The anomalies in the NDC codes seem to have serious consequence for the user if they use the correct
code to search for a drug as they will not find these drugs, so in effect information about that drug is not
available to the user.

See PHA_PRODUCT for related discussion on the integrity of National Drug Codes.

DRAFT Pt 5. Database Relational Schema and Data Tables

17

7. PERSON
The PERSON schema contains the contents of the record you would expect for a patient in a clinical

setting. The PK is person_id as to be expected (see Fig. 18). There are 13 index/FKs, namely,
deceased_dt_tm (DQ8), last_accessed_dt_tm (DQ8), name_first_key (VC100), name_first_key_a_nls (VC400),
name_first_key_nls (VC202), name_first_phonetic (C8), name_last_key (VC100), name_last_key_a_nls
(VC400), name_last_key_nls (VC202), name_last_phonetic (C8), name_middle_key_a_nls (VC400),
name_phonetic (C8), next_restore_dt_tm (DQ8). Three are Date/Time attributes that might not normally be
used as a PK. Two seem to be for auditing record purposes, last_accessed_dt_tm and next_restore_dt_tm,
while the third, deceased_dt_tm, would appear to be for a particular analytics purpose The remaining
attributes are forms of a patient’s names which normally might need to be indexed for rapid retrieval but not
for joining with other tables where the patient unique identifier, person_id, should be used. The datatypes of
these attributes also mitigates against them being used as PKs and FKs which normally would be expected
to be integers. Hence we envisage that all of these attributes are intended to be used for indexing purposes
to enhance rapid search and retrieval, which is entirely appropriate. However this does reinforce the
weakness of not having a clear separation between the identification of FKs and indices.

Figure 18. Part of the schema glossary for the table PERSON. The PK is person_id.

There are no data tables available for the PERSON schema but a screenshot shows that the PKs are
listed as floating point numbers (see Figure 19).

DRAFT Pt 5. Database Relational Schema and Data Tables

18

Figure 19. A screenshot of the data table PERSON showing the floating point values and sequential
values of the PK person_id.

The meaning of the PK attribute person_id is enigmatic as it is used again as the PK of the PRSNL
schema. A study of the “code” sets of each of these attributes is revealing. The attribute person_type_cd is
defined by a code set 302 and has the 4 values 899=Contributor System, 900=Freetext, 901=Numeric
Name, 902=Organisation, and 903=Person (see Fig. 20). One interpretation of this structure is that PERSON
is a set of 4 “categories of persons”, that is not “persons” per se, but that doesn’t fit well with the remaining
attributes in the schema, such as first, middle and last name, military rank, deceased date, etc. This more
than likely seems to be a process known as “overloading” where an attribute, person_id, is used for more
than one purpose and the meaning in any particular record has to be interpreted from the other attribute
information that accompanies it. This is generally an ill-advised strategy as it requires all people maintaining
the code that has dependencies that are not self-evident to understand the overloading characteristics, in
perpetuity. See PRSNL for an extension of this topic.

Figure 20. The code set values for the attribute person_type_cd from the table PERSON.

DRAFT Pt 5. Database Relational Schema and Data Tables

19

8. PHA_PRODUCT
The PHA_PRODUCT schema is shown in the schema glossary as having a single PK ndc (National Drug

Code) (see Figure 21). This PK has values repeated multiple times in the data table (see Figure 22) and this
would appear to be serious weakness in the design as we would expect all values to be unique. It may be
that in the implementation of this PK it is concatenated with another attribute to create a unique PK but
there is no evidence for that strategy in the information we have available. On the face of the evidence this
is an a example of non-unique PKs in the data table.

There are 22 putative FKs and no actual index/FKs shown in the glossary. The ndc attribute is not used
elsewhere in the schemata available to us but that does not exclude its use in parts of the schemata we
have not seen. Nevertheless the ITEM_MASTER schema seems to also be one of the tables recording
pharmacy details and its PK, item_id, is present in this schema without being identified as an index/FK.

It is not a requirement of any software using a commercially supplied database management system, in
this case Oracle, to create a PK using the built-in functions for maintaining the uniqueness of PKs. It is
entirely feasible for an application to ignore the supplied functionality and there is a long history in the
1960s and 1970s of software applications that managed the PKs in the application code. However since the
1980s vendor supplied functions have been seen as the safest strategy for protecting the uniqueness
integrity of PKs. In this data table we have not been able to identify a likely attribute that we might expect
has truly unique values for each record which might be maintained by the internal software as a PK.

Figure 21. Part of the schema glossary for the table PHA_PRODUCT with the annotation of ndc as a PK.

DRAFT Pt 5. Database Relational Schema and Data Tables

20

Figure 22. Screenshot of the data of PHA_PRODUCT Table. Entries in the PHA_PRODUCT table with
multiple occurrences of the PK, ndc : 9999-9999-06, 9999-9999-05, 65473-0704-01 and again
9999-9999-05.

The gcr_cki and gfc_cki attributes are defined with a datatype of CV100 (see Fig. 23) whereas in the
MEDICATION_DEFINTION schema the cki is defined as VC255 (see Fig. 9). Their Definitions do identify
these two attributes as the same information as cki but there is no information as to which schema uses
them as the PK. On the surface, this does appear to be another example of data duplicated across tables
without a clear raison d’etre.

Figure 23. Part of the schema glossary for the table PHA_PRODUCT showing references to
gcr_cki and gfc_cki FK attributes as datatypes VC100.

9. PRSNL
The schema of PRSNL has the PK person_id whereas by convention it should be prsnl_id and in fact this

form is used in various places throughout the schemata and ERDs. It also has username (VC50) as a PK
and using the search function in the glossary tool produces a reference to “PERSON_ID+USERNAME”
suggesting a concatenated PK (see Fig. 24). The need for a concatenated PK using these two fields is
without explanation and difficult to comprehend. As username is the login name of a user and it is easy to
understand that an index/FK might be sensibly created on this attribute, but this does not require a PK
declaration. There are 4 index/FKs of attributes using the names of persons, namely, name_first_key_a_nls
(VC400), name_last_key (VC100), name_last_key_a_nls (VC400), name_last_key_nls (VC202). There are 2
index/FKs, namely, physician_ind (I2), and position_cd (F8), which are most likely to be indices for search
and retrieval.

There are 6 putative FKs all of which indicate a weakness in design. The three attributes
active_status_prsnl_id, create_prsnl_id, and data_status_prsnl_id appear to be references to personnel and
hence are self references to this schema table. The attribute ft_entity_id is defined as the “primary key of
the table row associated with a free text row”. This unambiguously indicates that this attribute is a PK
elsewhere in the system and warrants referencing here as a FK.

DRAFT Pt 5. Database Relational Schema and Data Tables

21

Figure 24. Two parts of the schema glossary for the table PRSNL showing the multiple PKs person_id
and username.

The putative FK logical_domain_id is defined to be “the unique identifier for a logical domain” and so
should normally be enforced as a FK.

As with the PERSON schema there is an attribute that moderates the grouping of the PRSNL record.
The attribute is prsnl_type_cd with a code set 309 which has 3 code values: 904=Contributor System,
905=Template, 906=User (see Fig. 25). It seems more than coincidence that the code values across the
PERSON and PRSNL data tables have a continuous sequence from 899 to 906 and that they are more than
likely compiled at the one time. The code item common to both code sets is “Contributor System”, the
meaning of which escapes us when the tables are meant to be about PERSONs and PERSONNEL.

Figure 25. The code values for the attribute prnsl_type_cd from the table PRSNL.

10. REF_TEXT
The data table reveals as with other tables the PKs and index/FKs are implemented as floating point

numbers. The PK is a two-part concatenated key (see Figure 26). The PK values for refr_text_id are
consecutive odd numbers while the values for text_entity_id are consecutive numbers (see Figure 27). See
REF_TEXT_RELTN for further discussion. The PK attribute ref_text_name is a character field and would not
normally be expected to be used as a PK as well as being empty in the data table. There is no obvious
reason to expect that the attribute refr_text_id wouldn’t be a unique identifier and therefore the use of
ref_text_name as a PK is redundant.

DRAFT Pt 5. Database Relational Schema and Data Tables

22

Figure 26. Part of the schema glossary for the table REF_TEXT showing a two-part PK, refr_text_id and
ref_text_name.

Figure 27. Screenshot of the data table for REF_TEXT showing consecutive odd numbered
values of the PK refr_text_id and consecutive numbers of the putative FK text_entity_id, and empty
values for the PK ref_text_name.

11. REF_TEXT_RELTN
 An interesting phenomena is the allocation of PK functions for refr_text_id and ref_text_reltn_id are

always successive numbers (see Fig. 29). This implies that the process of allocating the PK values uses
successive counting managed by the application software and not by the database management system
which would be the normal method. The data table reveals as with other tables the PKs and index/FKs are
implemented as floating point numbers.

Figure 28. Part of the Schema Glossary for the table REF_TXT_RELTN where the declared PK,
parent_entity_name is a character field, and the putative PK refr_text_reltn_id is declared as an ordinary
attribute.

The attribute parent_entity_name (C32) is shown in the schema as a PK however the data values in the
example provided are all the same, “ORDERCATALOG” so this is contradictory (see Figure 29). This is a
clear example where PK uniqueness is not enforced.

One mystifying aspect in the the schema glossary is the attribute ref_text_reltn_id. The attribute
ref_text_reltn_id is a set of numbers that appear a reasonable candidate for the PK and whose definition fits
the notional purpose of this table, that is, “The id to identify the relationship between an attribute and a
piece of reference text.”

Figure 29. Screenshot of REF_TEXT_RELATION data table showing identical values of the supposed
PK, parent_entity_name.

DRAFT Pt 5. Database Relational Schema and Data Tables

23

Appendix 2 - Table of relational tables with PKs, Index/FKs, and
putative FKs

Table Name PK Index/FK Attributes _id-denoted putative FK
attributes

ACCESS_CONTRO
L_POLICY

access_cont
rol_policy_id

nil access_control_type_entity_id
data_source_entity_id

ACCESS_CONTRO
L_POLICY

access_cont
rol_policy_id

nil access_control_type_entity_id,
data_source_entity_id

DCP_FORMS_ACTI
VITY

dcp_forms_a
ctivity_id

dcp_forms_ref_id
enctr_id
person_id
task_id
updt_dt_tm (DQ8)

lock_prsnl_id

DCP_FORMS_REF * dcp_form_in
stance_id

dcp_fomrs_ref_id nil

ITEM_MASTER item_id nil nil

MEDICATION_DE
FINITION

item_id cki (VC255), inv_master_id,
parent_item_id,
primary_manufacturer_item_id.

comment1_id, comment2_id,
compound_text_id,
mdx_gfc_nomen_id,
order_sentence_id,
price_sched_id,

MED_IDENTIFIER med_identifier_iditem_id
pharmacy_type_cd

med_def_flex_id
med_ingred_set_id
med_package_type_id
med_product_id
parent_entity_id

PERSON person_id deceased_dt_tm (DQ8)
last_accessed_dt_tm (DQ8)
name_first_key (VC100)
name_first_key_a_nls (VC400)
name_first_key_nls (VC202)
name_first_phonetic (C8)
name_last_key (VC100)
name_last_key_a_nls (VC400)
name_last_key_nls (VC202)
name_last_phonetic (C8)
name_middle_key_a_nls (VC400)
name_phonetic (C8)
next_restore_dt_tm (DQ8)

ft_entity_id
logical_domain_id
name_first_synonym_id

DRAFT Pt 5. Database Relational Schema and Data Tables

24

Table Name PK Index/FK Attributes _id-denoted putative FK
attributes

PHA_PRODUCT ndc nil alt_sel_category_id,
comment1_id,
comment2_id,
compound_text_id,
def_durunit_id,
def_dur_id,
def_freq_id,
def_ftdose_id,
def_prn_id,
def_route_id,
def_stop_id,
def_strunit_id,
def_str_id,
def_volunits_id,
def_vol_id,
diluent_id,
ing_sent_id (not in use)
gcr_cki (VC100),
item_id (Primary key – Item id
for the product),
manf_item_id (Item_id for
manufacturer_item associated
with this product),
mdx_gfc__nomen_id,
oe_format_id,
order_sent_id,
price_schedule_id,
synonym_id.

PRSNL person_id
username
(VC50)

name_first_key_a_nls (VC400)
name_last_key (VC100)
name_last_key_a_nls (VC400)
name_last_key_nls (VC202)
physician_ind (12)
position_cd (F8)

active_status_prsnl_id
create_prsnl_id
data_status_prsnl_id
ft_entity_id
logical_domain_group_id
logical_domain_id

REF_TEXT_RELTN parent_entity
_name (C32)

refr_text_id parent_entity_id
ref_text_reltn_id

REF_TEXT refr_text_id
ref_text_nam
e

nil text_entity_id

DRAFT Pt 5. Database Relational Schema and Data Tables

25

