
Laboratory Software Applications Development:
Quality Assurance Considerations

James W. Dlllard, Ph.D., Robert E. Gladd, Vlcky Hutton

I NTERNATIONAL TECHNOLOGY CORPORATION: OAK Rl DGE UBORATORY

",,. <omdor> makes no repzsentations or antanties zyiih rcspect to thc conlents hercof,
and sVuifically dixlaims ory implieil uatanties of merchentability m fitness for any

partictlat pupox for both thls manual and the prcduct it desctibes. Etttdtermotx,
<oendor> nesen)es the igfit ta mtise this yttblication and b make chatges in the content

henol utithout obligation to aotify any pnson of such rcvision or changes,,,"

In less than a decade, microcomputers and software
applications have become ubiqitous, indispensable
tools in business, industry, and the sciences. The end-
user faces a bewildering array of options with respect
to makes, models, and peripherals, and software com-
pilers, libraries, firmware, and applications packages.
Since the foregoing standard disclaimer may be found
in the product documentation of virtually every com-
mercial microcomputer hardware and software ven-
dor, the end-user must blend the array of options, pos-
sible atgorithmic deficiencies, and system incompati-
bilities into a comprehensive quality producl The user
assumes--usually unwittingly-the cumulative respon-
sibility for assuring a quality outpul

Given the seemingly infinite choices confronting
the would-be computer user, it is imperative that ac-
quisition of computer technology be approached with
a firm foundation on quality objectives and a detailed
plan of action. Commit to practicing the rules of: Plan
your work Work your plan. Document your work
This paper provides a guide to assure the quality (fit-
ness for use) of procured computer technology as well
as any intemally developed software.

The first task for a prospective user of computer
technologies is to carefully define the need for utiliz-
ing computers in an unique work environmenL Is the
computer to be utilized for process or instrument con-
trol, sample tracking, data collection, calculations,
data-base management, trending, report generation,
word processing, all-of-above, some-of-above, etc.?
Will it be single task dedicated or multipurpose?

What are the regulatory and legal requirementspf the
business that apply? What is quality? Ask the ques-
tions at all levels of the organization from top manage-
ment down. If the questions are not asked prior to
hardware acquisition and software application devel-
opmenf the answers will probably just emerge in a
manner adverse to quality objectives.

To answer the question nWhat is quality?," one
must establish the acceptance limits for Fibress For
Use: the extent to which the product or service suc-
cessfully serves the purpose of the user during usage.
For a radiological laboratory as an ex.rmple, quality is
quite tightly regulated by federal law and regulatory
guides such as 10CFR50, ANSVASME NQA-I, USNRC
Reg. Guide 4.15 and ANSI N413, to list only a few.
Other considerations, such as client contractual re-
quirements, avoidance of litigation, and commitrnent
to professional integrity, may also be included.

Once the organizational needs and acceptance lim-
its of quality are defined, it is time to write the quality
assurance plan. If the plan is not written at this stage
to direct the development of the computer application,
it will surely be molded in the image of the final prod-
uct at the end, in an attempt to legitimize the projecl
The quality assurance plan at a minimum should reit-
erate the project goals and quality limits and include
the following maior elements:

r Require that quality functions are procedurally
controlled and documented;

I,/4BOMTORY SOFTWARE APPLICATIONS DEWLOPMENT: QUALITYASSUMNCE CONSIDEMTIONS Page 2

r Establish qualification requirements for key
pensonnel such as systems analyst protr.rmmer,

Procurement officer, etc.;

I Define acceptance criteria for placing
hardware/software on an approved vendor lis!

r Require that the procurement process, including
receipt, be documented, govemed by established
acceptance criteria to quality, and have an in-
dependent review and approval cycle;

I Procedurally control the development of
software and/or the blending of commercial
application package into user system (Utilize
the guidance of ANSI N413 as an example).
Include concepts of validation and verification
in activities of:

initiation,
requirements defi nition,
design,
coding (code h quality assurance athibutes
such as system security, input checking, data
modification tracking, output verification,
maintainability and operability).
integration and testing (reliability),
installation,
training,
operation and maintenance;

I Develop a corrective actions system to identify
conditions adverse to quality;

t Provide for identification and control of quality
assurance records (records necessary to document
the activities performed in the monitoring program
should be specified in the quality iuisurance
program).

The rest is relatively easy. |ust work your plan, and
document your work

ln ter:ms of reliability, the microcomputer is a truly
marvelous piece of equipmenL Its basic unit of proc-
ess--the instruction--is commonly referred to in MIPS,
or millions of instructions per second. Normally, the
billions of instrucrions that comprise an application
execute with a faithfulness that renders the application
of conventional concepts of process tolerance bounds
meaningless. The low-voltage binary logic circuits in a
CPU generally operate flawlessly over the life of the
machine. Electro-mechanical magnetic storage media
such as floppy and hard disks and drives, while more
prone to data comrption owing to mechanical malfunc-
tion, also exhibit an enviable degree of reliabitty.

Note the adjectives nnormallyn and ngenerally.n

Microprocessor vendors seem to be secretive regarding
thcir chip manufacturing QA data, and shipments of
sub-standard CPUs may find their way into microcom-
puter assembly lines where cost pressure considera-
tions dictate component choices. Perusing the innards
of a PC evinces the far-flung international geography
of the microelectronics indusby: Chip sets from Malay-
sia, Singapore, Kore4 The Philippines, Taiwan, and
elsewhere abound, b"ggt g obvious questions of docu-
mentable quality assurance. As an example, the con-
tamination of chips with traces of radioactive materials
has been known to cause ionization phenomena which
might compromise component reliability. Be cautioned,
the hardware/firmware may have bugs which are ven-
dor, model or component dependenL Product evalu-
ations published in PC trade periodicals invariably ad-
dress issues of processing speed, capacity, featur.es, and
price, but rarely, if ever, address issues of reliability.
Product reliability is apparently assumed a priori by
the PC trade press, license agreement disclaimers not-
withstanding. Prudence dictates that the end-user
thoroughly test any hardware/fir:nware attributefto be
utilized and periodically retest to assure that iondi-
tions remain stable.

The RAM of the operating microcomputer is occupied
by the operating system (PCA4S-DOS in the cases dis-
cussed here), one or more active applications progr:rms
and/or overlays, possibly one or more background
MM-Resident programs, residant device drivers, and
any number of VO data buffers. This shared RAM envi-
ronment and its potential for operational conflicts
leading to data cormption, in part gives rise to the
aforementioned legalistic self-inoculation vendors feel
compelled to provide with their documentation, and
attempts to elicit software vendor responses to queries
concerning product QA verification are likely be of no
avail. Letters and calls go unanswer€d, or a pass-the-
buck posture obtains: nWell, you see, our compiler is
written in Lettuce-C, (another compiler product) so
you really should contact them.n To pursue this line of
inqurry would lead to a near-infinite regress back to
the original set of punched cards or mechanical
switches, given that applications are generally written
in other languages which are often written in yet other
languages, which themselves are borne of particular
dialects of Assembly Language, which correspond to
the original native binary machine language specific to
the instruction sets of the various CPU chips. It is clear
that, given the universal vendor disavowal of any lia-
bility for product reliability and output accuracy, the
responsibilities of data processing quality assurance
rest solely with the end-user. Exhaustive user testing of
individual microcomputer hardware/software confi gu-

L4BORAToRY SOFTIYARE APPLICATIONS DEWLoPMENT: QUALITYASSUMNCE CoNSIDERATIONS Page 3.

rations is nothing less than dr end-user QA imperative.

The most important components of laboratory data
integrity, the primary focus of the following discus-
sion, center on accuracy and precision. Reliability is a
necessary but insufficient condition for assuring data
integrity; after all, output can be consistently incorrecl
Accuracy of output is inextricably bound up in the in-
terplay of hardware, fimware, and software. And here,
as one might expect, potential QA difficulties multiply
geometrically.

Accuracy and precision issues are typically focused
on the issue of numerical error owing to algorithmic
deficiencies and the necessary choices that are made to
truncate non-terminating fractional numbers at the
floating-point significand boundaries of the microcom-
puter ALU. ln particular, the results of error propaga-
tion through iterative processess may significantly im-
pact reported values, and care must be taken to mini-
mize any such effects by thorough cycles of coding and
testing.

Testing begins with assessment of the numeric opera-
tors and mathematical functions I e.9., ROUND$,
LOGQ, SQRTQ, and EXPQ, and arithmetic operators l
of the compiler(s) and,/or interpreter(s) to be used for
applications developmenl Since the end user will not
likely have access to the product source code, verifica-
tion is accomplished indirectly through the use of short
iterative programs that generate tables which are then
checked against authoritative standard tables, such as
those contained in the CRC Handbook of Chemisbry
and physics. An example of a short routine for check-
ing powers and roots follows:

The foregoing generates a printed table that is
checked against the reference document to affirm that
the functions and operato$i are indeed working cor-
rectly. Note that many mathematical expressions, such
as those yielding powen; and roots, may often be ex-
pressed in more than one way, and it is advisable to
check the syntactically equivalent statements for con-
sistent output exactitude, since a programmer may use
syntactical equivalencies in a random fashion during
applications dwelopment, and different programmeni
may habitually favor one alternative equivalent expres-
sion over others. Is it in fact uniformly the case that
SQRTOI) = N^.5, or that N^2 : N*N : N'+*2 ? A
little extra coding takes it out of the potentiallyhazard-
ous realm of assumption.

Similar iterative table-generating routines may easily
be coded to verify trigonometric, exponential, logarith-
mic, statistical, financial, and numeric conversion func-
tions, and to verify the proper functioning of the avail-
able mathematical operators of the source code lan-
guage. These routines should be executed in the vari-
ous hardware/operating systeny'software environirents
they will be applied to during the operation of firrished
applications. Do the routines yield identical results
under all releases of DOS, through all CPUs (8085,
80?,86,80386), with or with-floating-point numeric co-
processors present? If the source code will run in an in-
terpreted environment, does the interpreted output re-
sult exactly match that of the compiled code? Ques-
tions such as these may only be unequivocally an-
swered by a thorough process of coding, testing, and
documenting.

It is important to note again that testing of the accu-
racy and precision of numerical processing, while the
principal concern from most QA perspectives, is not the
entire story. Data storage and retrieval consistenry
should be tested on a routine basis, for both numeric
and string data It should not be blindly assumed that
data stored on magnetic medi4 be they floppy disks,
hard disks, or tape drives will exhibit flawless repro-
ducibility over time. It is a relatively simple task to de-
velop routines which use standard inpuVoutput sets to
verify storage and retrieval reliability.

Once a compiler or interpreter has been qualified in
the foregoing manner for general numeric accuracy
and precision, and mass storage VO integrity, the cycle
of pl annin { co din{ testin g/debu ggin g/re-cod in{ r e-
testing begins for software applications developmenl
A thorough front-end assessment of the scope and re-
quirements of a proposed application is an essential
first step. It is no exaggeration to observe that, in a
sense/ the time spent de-buggrng is inversely propor-

IABORAToRY SOFTPIrARE APPLICATIONS DEWLOPMENT: QUALITYASSUMNCE CONSIDERATIONS Page 4.

tional to the at least the squire of the time spent plan-
ning the application. Projects may often evolve into a
maze of spaghetti code when prematurely written as
small applications coded non the flyn to meet an urgent
processing need. This approach inevitably invites a
continuing stream of requests for the program to be al-
tered to address "just one more taskn and placed back
on-line A.S.A.P. Source code expanded in such a fash-
ion will often acquire a cazy-quilt of loops,IF-THEN-
ELSE statements, and boolean .AND/.OR/.NOT. modi-
fiers that risk logic flaws difficult to trace as the source
code begins to run to many pages and program logic
flow becomes harder to track absent a comprehensive
pre-code design.

Source-code traceable program bugs stem from either
syntactical or logical errors. Code de-buggers are ca-
pable only of syntactical error flagging: Program logic
is the responsibility of the design team and the pro-
grirmmer. Compounding the potential problems of
logic de-bugging are the presence of undocumented
syntactical anomalies, i.e., source code statements and
functions whose executions differ from their published
specifications, leading to unanticipated program flow
control and processing difficulties. There are multiple
major vendors of each source code language, most
claiming to adhere to the ANSI Standard where one ex-
ists, but each likely to issue product containing a differ-
ent particular subset of undocumented instruction
anomalies. Since compilers and interpreters themselves
undergo continual revision, undocumented anomalies
.ue never centrally catalogued, most being reported by
users in a sporadic, anecdotal fashion in the computer
magazines. Undocumented syntactical flaws are often
ones that only become apparent when a specific and
relatively rare combination of program variables inter-
sect to yield an unexpected and incorrect result and
thus may only be discovered accidentally. The pro-
grammer should note and document each finding of a
source code instruction that does not perform as speci-
fied. Such documentation should include the coding
alternative(s) to the problem, i.e., the work-around(s)

The programmer should, wherever practicable, em-
ploy a strategy of modular programming. There are a
host of operations that are either identical, or nearly so,
across applications. The programmer should develop
libraries, or modules, of code that are relatively easily
incorporated into new applications with little or no re-
vision. Libraries of add-in functions and source code
language extensions are widely available commercially,
and may be useful in the avoidance of re-inventing the
wheel during applications development (while keeping
in mind the responsibility of the end-user to test pur-
chased libraries as thoroughly as the rest of the equip-

ment and programming tools). Where program branch-
ing or looping conditions :re concerned, logic flow in-
tegnf is maintained by a coding strategy that avoids
the use of potentially amphibolous boolean statements.
For instance: Consider the statement X .AND. Y .OR.
Z, a statement that could be construed as meaning (X
.AND. Y) .OR. Z, or X.AND. (Y .OR. Z). Control state-
ments that contain multiple boolean operators are a po-
tential source of trouble, and should be coded and
tested with great care. Where a source language allows
for the use of nested IF-THEN-ELSE statements, com-
pound boolean statements may, to a substantial degree,
be avoided in favor of more a more explicit sequence of
nested IF-ENDIFs.

Sufficient internal source code documentation is in-
valuable, especially for large applications with long de-
velopment times, and for situations in which the pro-
grarnmer must keep a variety of projects moving along
in various stages of completion every day. The key
word here is eufficienL Examples are rife in which an
obsenrer has a difficult time picking out the actual code
buried within paragraph after paragraph of vqlbose
source code commentary. To a certain minimal €xtent
where high level source code languages are used, the
code should be at least somewhat self-documenting,
with a readily apparent program flow and logically
grouped blocks of structured code that give some indi-
cation of the operations being performed. Where a lan-
guage interpreter or compiler ignores blank spaces sur-
rounding commands and their arguments, it may be
helpful to use source code indentation, particularly to
indicate looping and branching operations. Blocks of
logically related code may be separated by one or more
blank lines to enhance readability.

In cases where applications perform substantial float-
ing-point arithmetic, and particularly where mathe-
matical operations reside in iterative loops, care should
be taken to minimize, to the extent possible, the effects
of rounding and/or truncation error propagation. Spe-
cifically, division and root-taking contribute signifi-
cantly to floating-point error. Where coding choices are
available, the number of division and root-taking op-
erations should be minimized. Never insert rounding
operations in interim calculations; Full floating-point
capacity should be carried throughout a computational
sequence, with the desired rounding function applied
to the end floating-point result.

Where an application is designed to process user-sup-
plied input, most often that of data entered at the key-
board, every practical check routine should be applied
to the user input before any processing takes place.
Two alternatives of input format are available; The

I/4BOMTORY SOFTITAREAPPLICATIONS DEVELOPMENT: QUALIWASSURANCE CONSIDERATIONS Page 5.

item-by-item prompt, and the screen form. Most high-
level applications employ user input screen forms to
accept keyboard data Typically the user brings the
data to the computer on a paper fonn that generally
mirors the layout of the CRT form. Some high-level
languages contain built-in scrreen template/keyboard
input functions that restrict the allowable input to ap-
propriate data types and ranges, trapping the cursor in
an enbry cell until the data restrictions have been mel
With the item-by-item alternative, each input item may
be evaluated before the next input prompt appears.
Whatever the input method employed, input data
should be evaluated to the maximum practical extent,
with loop-back and erxit options coded in to minimize
the possibility of erroneous output generation. Where
an application reports a processing result to a disk file
or printer, it is good practice to include the original
user input data set with the output set for easier verifi-
cation of results.

Before concluding this paper, some examples to em-
phasize the importance of quality:lrisurance considera-
tions in computer software systems development are
instructive. A personal encounter with a reputable
compiler product emphasizes the importance of testing.
A new revision of the compiler was purchased and
tested per the QA plan. The new version egregiously
failed to replicate a standard output data set from a
previously compiled and qualified application. The
vendor was informed in writing of the condition ad-
verse to quality. Silence, followed by vendor restate-
ment of the product disclaimer were the initial re-
sponses. Some time later, however, a free unsolicited
corrected revision was distributed to all users on rec-
ord, with no caution or explanation concerning use of
the defective version.

A final example concerns a modern analytical instru-
ment maried to a microcomputer controller. The black
box now contains fewer dials and switches than its
analog predecessor because the proprietary software
now controls the box. The user must explicity and cor-
rectly inform the controlling software of the switch po-
sition on the front panel critical to the proper function-
ing of the equipment an incorrect switch setting is not
flagged by the system. Equipment incompatibility and
insufficient communication between critical compo-
nents may result in the generation of anomalous data
that is not readily apparent during process operations
nor easily identified during a data review process.

In conclusion, the bottom line for quality assurance
considerations rests with the end-user. Computer
technology may be used as a convenience to improve
productivity, but does not release the professional from

the responsibilities of assuring quality. Given that each
microcomputer hardwart/software combination will
likely be a unique one, a professional committment to-
ward data processing quality assurance is best admini-
stered through a systematic and thorough program of
documented applications development and testing. n

APPENDX A:

The following is based upon a motion in an actual
client case, and is typical of the type of documentation
demands made by litigants in high-stakes liability ac-
tions. It should be readily apparent that microcomputer
equipment and software may rightly be construed as
falling within the purview of such a motion for discov-
ery, and furtherundenicores the prudence of a compre-
hensive microcomputer Quality Assurance program.

MOTION FOR DISCOVERY
:

"Defendant shall prodace all notes, memoranda, corre-
spondence, docammts, or record.s of nny sort ftegardless
of form, including magnetic medio, or flny other form of
recording) which relate directly or indhectly to any
samples ot analyses ftom, near, or telated to the property
oaned or occapiedW any of the plaintiffs in this action.
Without linitatiol, the docamants with respect to
satnples collected or analysis performed shall include all
d.rafts, copies, originals, field. notes, Iaboratory notes,
telephone or calcfldar notations, and computations
a:hich relate to: the manner, method locetion, and num-
br of samples to be collected, the compoands to be tested
for, the analyses requested., the cost of thc analyses re-
quested, thc billing for the rerytcsted analyses, and the
reporting of the analytical d.ata for the requested analy-
ses; all analyses acfi.ally ?qforned, athetherrcported or
not; all dou.mants pertaining to thc methodologies or
procedures ilsed bt the stornge, custody, handling prepa-
ration, erttactiott, analysis, and d.isposal of all samples
uthether reported ot not reported, includ.ing all rccords
pertaining to the educatiorcl andlot professional quali-
ficatiotts, certificatiotts, and training of all pasonnel di-
rectly or indirectly inooloed in suid laboratory analyses
pufonned on said samples putsuant to the plaintiffs' ac-
tion; thc uritten Quality Assurance plan under uthich
the analyses anre performed.; all records pertaining to
spectfic internal qunhty conttols, including but not lim-
ited to replicate samples, spiked samples, split samples,
blanks, internal standards, zno axd spatt gdseq quality
control samples, surrogate samples, calibration stsn-

I./IBORATORY SOFTVAREAPPLICATIONS DEVELOPMENT: QUALITYASSUMNCE CONSIDEMTIONS Page 6

datds and dettices, and reagatt checks; the resalts of all
intrnal and exterflal performance and system audits im-
mediately fecediflg snd immediatcly follawing thc peft
fotmance of the abooe analyses; the results of all EPA
reference and spiked samples; all measurantnts of d.ata
accuracy, precisiott, and completaness aith respect to the
analyses performed; ruords and doatmmts provid.ing
the manufactwen model number, and op*atiotts rnaflu-
als fm all instrffientation used in the analyses; and the
records of the operuting cond.itiotts of all instntments-
tion used to perlorm the analyses, including thc results
of all naintanance and prcoantatioe maintataflce per-
fonncd"

REFERENCES

Title 10, Code of Federal Regulations, Part 50, Quality
Assurance Criteria for Nuclear Power Plants and Fuel
Reprocessing Plants

ANSVASME NQA-I, Qualig Assurance Program Re-
quirements for Nuclear Facilities

U.S. Nuclear Regulatory Commission, Regulatory
Guide 4.15, Quality Assurance for Radiological Moni-
toring Programs (Normal Operations) - Effluent
Streams and the Environment

ANSyIEEE Std.730, IEEE Standard for Software Qual-
ity Assurance Plans

ANSVANS 10.5, Guidelines for Considering User
Needs in Computer Program Development

ANS 10.4, Guidelines for the Verification and Valida-
tion of Scientific and Engineering Computer Programs
for the Nuclear Industy

ANSI N413, Guidelines for the Documentation of Digi-
tal Computer Programs

IAMES W. DIIH"RD Ph.D. is the Technical Director
and Deputy Laboratory Manager for the Oak Ridge
Laboratory of lnternational Technology Corporation.

ROBERT E. GLADD is Vice President of Corporate
and Academic Media Associates,lnc. of Knoxvi[e TN.
(CAM3). He is a micocomputer applications consultant
for the Oak Ridge Laboratory of IT.

VICKIE IIUTION is the Quality Assurance Coordina-
tor for the Oak Ridge Laboratory of IT.

