
ASQC Section 705 Surnmer 1995 Newsletter, Pagel2

fcch lafk:
Probabi@ lrom
"Ct to ,Gu

Robert E. Gladd, CQE

Item 1: On an episode of NBC's "ER" earlier
this year, two physicians-one a senior
clinical researcher, the other his resid.ent
subordinate-are scurryin g through the
hospital halls discussing the latest results
of a study they are working on. The mentor
says, in. a tone of enthusiastic anticipation,
"the chi-square of our latest trial yield,ed a
p-ualue of 0.06; we're just one percentage
point away from being able to publish
significant findings! Get right on it!"

Item 2: A CQI trainer with intpressiue
academic and. professional pedigrees
ad.dresses a QI seminar of health care
etnployees on. the topic of statistical
fun dant entals for process improuemertt.
Discussirtg the nature of data distributiort's,
he opines that "statisticians like to use big
uords l ike'skew' and'kurtosis, '  but rnost
things itr. tlature ore normally distributed.
The rtornal distribution is a law of nature."

Item 3: A utidely-used teachitr.g text for
radiation lab chemists publishes a
morngraph frorn a radioirnmutloassay
nethod deuelopmertt study for quantifyitr.g
serum barbiturote concen trations. The
researcher reports running a set of 30 serum
blanhs to obtain a background baseline an'd
set a cut-off limit, and the following
parameter estimates are giuen: p = 15
ng / mI., o = 27 ng / ml. Consequently, a cut-
oll of 100 rr.g/ mL is estublished "to assure a
<1o/o chance of a false positiue."

"lttst glmmc thc p-valucrll"
I used to serve on a health care QI projects

committee with a doc----call him Dr. I.M.
Harried-who once precipitously burst out
with "just gimme the p-ualue" in the midst
of a teleconference call while we were
discussing project data. As ifthe knowledge
that "p=0.084" or "p<0.01" utterly settled the
decision to be made concerning the clinical
process issue at hand. Dr. Harried's
inductive innocence is unfortunately all too
common, and ends up in part being reflected
in cutesy but inaccurate dialogue written for
supposedly clinically astute television
productions such as "Bft.''

A little statistics can be a dangerous thing.
Recall Disraeli's lament. Better yet, recall
Dr. Shewhart's admonition:
"...applied science...is euetl more exacting
than pure science in certain. matters of
accurac! and precision. For example, a pure
scientist makes a series of measurements d'nd
upon the basis of these mahes what he [she?
-EdJ considers to be the best estimates of
accuracy and precision, regardless of how
few nr.easurentents he nay haue. He may
readily admit that future studies naj proDe
such estimates to be in error...But now let us
look at the applied scientist. He knows that if

he were to act upon the nteagre euidence
sometimes auailable to thc pure scientist, he
would make the same mistakes as thc pure
scientist...He also knows that through his
mistakes sotneone may hse a ht of money or
suffer physical injury, or both.3

Forget for a moment the broader range of
issues implicit in statistical reasoning--data
dispersional characteristics, random and
representative sampling, temporal stability,
etc. We will address them shortly, but first
ofall, one fundarnental and prevalent
oversight needs attention: "p-values" or
probability findings are themselves
estirnates, and, as such, also have
distributional characteristics-minima,
maxima, range, central tendencies,
(a)symmetries. Such should be obvious: run
a quantifiable experiment 100 times using
100 different random samples drawn from
the same population, you get*in addition to
a fairly Gaussian distribution of p estimates
(sample means)-o distribution of
probability estimates (used to assess your
nul and alternatiue hypotheses).

When someone makes an empirical
assertion as to what "the probability rs" I
instinctively recall Deming's warning that
"lP]robability has use; tests ofsignificance
do not. There is no true value ofanything."a
That one always gets'em going, but it's true
My knee-jerk reply is always, "you mean
your probability estimate is..."

Probabillty 1 Ol rcvlsftcd
So what? What's the point? Well, recall

that the "expected value" of any measured
phenomenon is the probability (0<=p<=l)
times the "payoff' (i.e., the total benefit or
penalty of an outcome). A thorough analysis
that seeks to minimize risk rnust take into
account the range and distribution of
calculable probability estimates, which is
why we have such tools as decision theory
minmax criteria. loss functions. and
Bayesian risk estimators.

More big words. Jeez, I think I'm gonna be
ill. Bach up a minute, OK; you uanna run
that'standard deuiation'thing by me one
more time?

OK: o = RMS, the Boot-Mean-Squared
deviation, a.k.a. the square root ofthe mean
squared deviation, a.k.a. the expected.
uariability around the mean value ofyour
data. So; now we've got "p' and "o." [,et's
head to Normal Distribution Land:

I  _o.f( ,_r)1,
(n;p,o)=-#t-"1 " l

\t zTo
The Gaussian probability density function
that gives us our familiar Bell Curve, which,

3 Shewhart, Walter A., Statigtical method fron the
viewpoint of oualitv control, (New York, Dover
Publications, f986), pp. 120-1. Originally published
in 1939 by the U.S. Department of Agriculture.
A watershed resource and delightful book.
I ibid., Forward, pg. i-

when subjected to the mechanics of integral
calculus, provides the "areas under the
curve" that are analogous to the probability
of our experimental numerical data points
and p estimates being "x' distance l the
target mean while still belonging to the
population (i.e., no identifiable and
remediable causes).

Remember (dimly) our friends Ho and Ha,
the "nul" and "alternative" hypotheses,
respectively? Recall "setting the rejection
criterion for Ho"? "Alpha" and "Beta" errors?
Remember? "Set a = 0.05, if 2>1.96, reject
^EIo." (recall that, by convention Ho, the "nul
hypothesis" properly means that, going in,
your experimental data characteristics-
principally the means-are assumed to be
"no different' statistically from the
population or reference parameters).

So, under the assumptions of
di3tributional normality, "set c = 0.05, if
2>1.96, reject Ho" is interpreted as a 5%
chance of a "false positive" determination:
attributing a'lsignificanf,' (identifiably
casual?) difference where none exists (the
"Type I," or "alpha error'). Conversely,
rejecting Ha ( the alternative hypothesis)
when it is in fact true is known as the 0
fteta) error: a "false negative," concluding
that things are OK when they are not
('Type II" error).

WeIl, being right or wrong either way
(o or p) has, for the most part, quantifiable
consequences. The ranges ofour win4oss
scenarios ('expected values"), however, will
depend on our implicit empirical
assumptions. To this point we are talking
about the "0' referred to in the title of this
essay: Gcuss-the probability estimates
derived from "noimally distribut€d" data.

Chcbychef:s lhcotem
On to the "C'in our title. The Russian

mathematician Chebychev derived a proof
revealing that, for ony data set with
calculable mean and standard deviation
estimates, the proportion ('probability'') of
data within t "k' standard devihtions is
always at least

/  r \l r  ' |
( '  -  - t ,

So, at least 75% must be within + 2o
[r-(1+22)], 89% [1-(1+32)] within t3o, and
so on, irrespective of any distributional
characteristics. Chebychey's Theorem
provides us with "worst case" probability
estimates, and serves as a lower bound for
probability estimate distributions, with the
"perfectly'' normal, Gaussian distribution at
the other end. Probability from "q'to "G."

Recall that a "z-score" (a.k.a. "standard
score") represents the departure ofa value
from the mean, expressed as a decimal
fraction or multiple of the standard
deviation:

z  Q - p \
L = -
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kt a perfectLy smooth Gaussian
distribution (extant in theory alone), 68. 2o/o
of the area under the curve lies within + I o
('one sigma"), 95.4% within + 2 o, and 99.7o/o
within + 3 o. When we recognize that real-
world data sets merely approximate the
"normall'to varying degrees, a bit of
circumspection would seem to be
appropriate when making probability
assertions. Comparing Chebychev area
limits to the corresponding Gaussian areas
for sigmas from one to five (i.e., the z-values)
illuminates the gaps:

z-value p(Chebvchev)
1.0 0.000
1.5 0.556
2.0 0.750
2.5 0.840
3.0 0.889
3.5 0.918
4.0 0.938
4.5 0.95'l
5.0 0.960

p(Gauss)
0.682
0.866
0.954
0.988
0.997

>0.999
>0.999
>0.999
>0.999

Notice the 20.4o/o and 10.8% differences at 2
and 3 z, respectively between the Chebychev
limits and the Normal Assumption.s Anyone
who crunches some numbers, derives a z-
score of2.0, and blissfully concludes that
they have found "significance, with <57o
chance ofan c errof is being perhaps
unduly optimistic. Note that under
Chebychev, "<5o/o a error" doesn't kick in
unt i lazo fabout4 .S.

l,et's re-visit Item 3 from the beginning
of this article. Obviously, the researcher
concluded that 100 ng/ml. was a cut-off point
equivalent to a z-score ofabout 3.15 [p = 15,
plus 3o = 96, ergo at 100, p(cr error)<0.O11.
What's wrong with this picture?

First ofall, these are ratio-leuel data, i.e.,
you can't have less than zero nanograms
concentration ofanything. For a ratio-level
distribution to be "normal," the sigma
cannot be greater than roughly 33% ofthe
mean (p - 3cr >= 0). This fellow reports a
mean of 15 with a sigma of 27, a relative
standard deviation6 [(o+p) x 100] of 180%!

It's Chebychev time, baby. These data-
typical of matrix blank results, I might
add-are highly skewed, and worthy of
considerably more inductive caution than
displayed by this researcher. There's a false
precision/"significant figures" problem with
this example also. Eschewing for a moment
the dearth ofsupport for statistical
normality in the data as reported, had this
chemist run 1,000 matrix blanks (or,
minimally, 100) and not gotten a result
> 100 ngiml., one might buy offon an
assertion of"p(a error) < 0.01" irrespective of
any statistical skewness. But, where n = 30,
one treads on shaky ground.?

5 Assuming a z'tail assessment. See a problem?
(' RSD, also referred to as the "CV' or coefiicient of
variation. Sometimes called the "percent standard
deviation." Merely the ratio of sigma to mean.
? For an interesting discussion on the problem of
computing confidence intervals when experiments

For instance: 1 = 8 = 0.125. If I merely
sample eight widgets and find one defective,
does that justifu concluding that"l2.5o/o" of
my lot are defectives? If you express any
finding as a percentage after examining less
than 100 elements, you are extrapolating.

"..,d trdlv ol Natufc."
Back to Item 2: The instructor was

absolutely correct in one sense; many
measurement distributions of natural
phenomena closely approximate the
Gaussian model. And, it is also the case that
"higher momenf,' parameter estimates such
as Skew and Kurtosis coeffrcients are
unreliable when computed using small a "n,"
and should be interpreted carefully.

But quality improvement mainly involves
the measurement of human organizational
activities: manufacturing operations and
service processes. One cannotjust assume
pure dispersional normality in such
environments. To do so elevates the risk
oferror. Perhaps the increase in risk is
trivial, perhaps not.8 Depends on the
consequences-the reasonable ranges in the
matrix of "payoffs" and "payouts."

Our instructor that day was just trying
to provide warm fuzzies to an audience
comprised primarily of paradigm-shift -
anxious and befuddled statistical naifs. in
an effort to get some fundamental principles
of variation across. And that is just fine; he
had a lot to cover in a limited time.
Problems loom, however, when subsequent
lessons delve no further into the fiire print.
All too often, there ore no ensuing lessons,
given that training expenditures typically
continue to be posted to "overhead expenses"
rather than to "capital investments" on the
chart of accounts.

In the Downsizing Era, we're all expected
to become plug-'n-Olut one-person support-
staff / CQI information-processing analytical
departments, adept with "measurable
objectives," databases, spreadsheets, and
statistics. Excel and Quattro Pro serve up
neat-o color (rotatrng 3-D!) graphics, replete
with histograms, trend lines, and 95olo
confidence intervals after a few mouse clicks

or study results turn up zero "positives" (however
operationally defined), see If Nothing Goes Wrong,
Is Euerything AII Righ.t? Interpreting Zero
Nunteratorsby Hanley & Lippman-Hand, PhDs, in
JAMA, 4-r-83, Vol. 249, No. 13. The authors
examine the (Poisson process) mathematical basis
for applying, among other things, a "rule of 4.6/n'
with which to calculate the upper bound of a 99o/o
confidence interval (0 <= p <= 4.6/n) when zero
positives are found in a sample ofsize "n." By this
rule, our chemist would need a run of at least 461
serum blanks, all < 100 ng/ml., to sustain his false-
positive probability claim, given the obvious non-
normality in his initial data. Otherwise he's stuck
with Chebychev and about a I0% F.P. risk in the
absence of a defensible fit with some other type of
known probability densrty ftrnction. The "4.6" rule
would be even less forgrving: 4.6 = 30 = 0.153.
8 Another'big word' bandied about is "robustness."
It is argued-usually by computer-modeling
academics with no uroney at risk-that various
parametric assumptions can be violated with no
harm done to outcornes. Sorneone forgot to inform
several ofthe laboratory auditors I've had to face.

and drags. Never before has it been so easy
to assemble such quantities of aesthetically
pleasing misinformation. Process tampering
(or neglect) via Presentation-Plus, 24-bit
color, 720 x 360 dpi drop-shadowed Doo-Doo.

Dlsracll's llcutcnant
Style over substance: Been there, done

that. I once presented a paper on an aspect
of laboratory QC at an EPA radiochemistry
conference. During the post-delivery Q&A
a curmudgeonly research eminence from
Canada rose in rebuke: "WelI, thatjust goes
to show once again that you can'prove'
anything with statistics." It was a valuable,
if public and painful Iesson in statistical
humility. Given my misleading title-
Inproued Eualuation ol Enuironntental
Radiochemical I norganic Solid. Matrix
Replicate Precision: Norrnalized Ran ge
Analysis Reuisited-this man had come
expecting information on how to enhance lab
precision by reducing variability in certain
problematic replicate QC samples,.and he
was not at all amused with what he
regarded as a bunch of sophistic post-hoc
p-value apologies for why our external PE
inorganic solid replicates were so volatile.

Ouch! He was right. My paper was
eloquently written and peppered with cool
graphs ofintersecting bell curves, shaded
regions thereunder, and tables of z's and p's.
It had been reviewed and approved by no
fewer than three of my laboratory Ph.D.
superiors (one of whom was my "co-author').
Our Gaussian sanguinity aside, it was
technically accurate, as far as it went-
which was nowhere, in terms of adding value
by prescribing a useful method for reducing
operational variability.

The censure that day is forever stamped in
my synaptic inventory. Now, when I am to
evaluate QI data, I focus on three questions:

l. Have the model assumptions been
adequately addressed, including
stability over time? (after all, we're
predicting, right?)

2. What are the likely practical
consquences ofbeing wrong, either
through process tampering (o) or
neglect (F)? And, nost inportantly,

3. How are these results helping me locate
remediable causes so we can improve
things?

All inductive methodology, however simple
or sophisticated, must work cautiously and
critically toward this last end. The
"statistically significant p-value" estimate
may be a harbinger of a casual and
correctible phenomenon; it may be a mere
wake-up call to look more closely at process
variation, or; it may be a misleading
probabilistic apparition arising out of
natural sampling variability and/or a haze of
unsustainable assumptions.

You get what you ir.spect, not what you
gxpect. I


